Technical Implementation: Optimizing Military Vehicle Refueling with AI: My DRDO Internship Project
System Architecture
The system is built using a modular architecture with several key components:
1. Core Components
# Constants and Configuration
MAP_SIZE = 40
DAYS = 15
BASE_FUEL_THRESHOLD = 0.25
REFUEL_AMOUNT = 0.70
STRANDED_FUEL_LEVEL = 10
PATROL_DURATION = 100
# Vehicle Configuration
vehicles = [
{
"id": 1,
"fuel_capacity": 100,
"consumption_rate": 0.5,
"position": np.array([10, 10]),
"fuel_level": 100,
"path": [[10, 10]],
"patrol_area": (0, 0, 20, 20),
"state": "patrolling"
},
# Additional vehicles...
]
2. K-means Clustering Implementation
The K-means clustering algorithm optimizes hub placement:
def optimize_hub_locations(vehicle_positions, n_clusters=3):
# Convert vehicle positions to numpy array
positions = np.array([pos for pos in vehicle_positions])
# Initialize K-means
kmeans = KMeans(n_clusters=n_clusters, random_state=42)
# Fit the model and get cluster centers
kmeans.fit(positions)
hub_locations = kmeans.cluster_centers_
# Calculate quality metrics
inertia = kmeans.inertia_
silhouette_avg = silhouette_score(positions, kmeans.labels_)
return {
'hub_locations': hub_locations,
'labels': kmeans.labels_,
'inertia': inertia,
'silhouette_score': silhouette_avg
}
def update_hub_positions(vehicle_history):
# Collect historical vehicle positions
all_positions = []
for vehicle in vehicle_history:
all_positions.extend(vehicle['positions'])
# Optimize hub locations
hub_data = optimize_hub_locations(all_positions)
# Update hub positions
for i, hub in enumerate(hubs):
hub["position"] = hub_data['hub_locations'][i]
return hub_data['silhouette_score']
3. Genetic Algorithm Implementation
The genetic algorithm optimizes refueling strategies:
def genetic_algorithm(progress_callback=None):
population_size = 50
generations = 100
mutation_rate = 0.1
crossover_rate = 0.8
population = [create_individual() for _ in range(population_size)]
best_fitness = float('-inf')
best_individual = None
for generation in range(generations):
# Evaluate fitness
fitnesses = [fitness(ind) for ind in population]
# Select parents and create new population
parents = random.choices(population, weights=fitnesses, k=population_size)
new_population = []
for i in range(0, population_size, 2):
child1 = crossover(parents[i], parents[i+1])
child2 = crossover(parents[i], parents[i+1])
if random.random() < mutation_rate:
child1 = mutate(child1)
if random.random() < mutation_rate:
child2 = mutate(child2)
new_population.extend([child1, child2])
# Elitism: keep the best individual
best_of_generation = max(population, key=fitness)
new_population[0] = best_of_generation
population = new_population
if progress_callback:
progress_callback(f"Generation {generation + 1}: Best fitness = {best_fitness}")
return best_individual, best_fitness
4. Refueling Strategy Implementation
The refueling strategy considers multiple factors:
def apply_refueling_strategy(strategy):
vehicles_needing_refuel = []
for vehicle in vehicles:
nearest_hub = find_nearest_hub(vehicle["position"])
dynamic_threshold = calculate_dynamic_threshold(vehicle, nearest_hub)
if (vehicle["state"] == "stranded" or
vehicle["fuel_level"] <= dynamic_threshold * vehicle["fuel_capacity"] or
predict_refuel_need(vehicle, PATROL_DURATION)):
vehicles_needing_refuel.append(vehicle)
if vehicles_needing_refuel:
# Calculate centroid for efficient refueling
centroid = np.mean([v["position"] for v in vehicles_needing_refuel], axis=0)
# Optimize refueling sequence
vehicles_needing_refuel.sort(
key=lambda v: np.linalg.norm(v["position"] - centroid)
)
# Handle refueling logistics
handle_refueling_logistics(vehicles_needing_refuel, centroid)
5. Visualization System
The visualization system provides real-time feedback:
def update(frame, day):
fig.clear()
gs = fig.add_gridspec(2, 1, height_ratios=[1, 9])
ax_dashboard = fig.add_subplot(gs[0], frame_on=False)
ax_map = fig.add_subplot(gs[1])
# Update vehicle states
update_vehicle_states()
# Draw visualization elements
plot_entities(ax_map, vehicles, refuel_vehicles, hubs)
draw_refuel_dashboard(ax_dashboard, vehicles)
# Add alerts and information
display_alerts(ax_dashboard)
# Update data collection
frame_data = extract_frame_data(frame, day)
update_csv(frame_data, day)
6. Data Collection and Analysis
The system includes comprehensive data collection:
def extract_frame_data(frame, day, vehicles, refuel_vehicles, hubs):
data = []
# Collect vehicle data
for vehicle in vehicles:
data.append({
'frame': frame,
'day': day,
'entity_type': 'vehicle',
'id': vehicle['id'],
'x_position': vehicle['position'][0],
'y_position': vehicle['position'][1],
'fuel_level': vehicle['fuel_level'],
'state': vehicle['state']
})
# Collect refuel vehicle data
for rv in refuel_vehicles:
data.append({
'frame': frame,
'day': day,
'entity_type': 'refuel_vehicle',
'id': rv['id'],
'x_position': rv['position'][0],
'y_position': rv['position'][1],
'state': rv['state']
})
return data
Performance Optimizations
-
Pathfinding Optimization
- Implemented efficient graph-based pathfinding
- Used caching for frequently accessed paths
- Optimized collision avoidance algorithms
-
Genetic Algorithm Tuning
- Balanced population size and generations
- Implemented adaptive mutation rates
- Optimized fitness function calculations
-
Visualization Efficiency
- Implemented selective rendering
- Optimized data structure updates
- Reduced redundant calculations
Future Technical Improvements
-
Performance Enhancements
- Implement parallel processing
- Optimize memory usage
- Add caching mechanisms
- Improve batch processing
-
Visualization Upgrades
- Add interactive plots
- Implement 3D visualizations
- Enhanced comparison tools
- Real-time updates
-
Statistical Enhancements
- Additional statistical methods
- Advanced validation techniques
- Improved error handling
- Enhanced power analysis
The technical implementation demonstrates a robust approach to statistical analysis, combining efficient computation with comprehensive visualization and analysis capabilities.