Technical Implementation: Building an EV Charging Station Predictor & AI Assistant at Exicom

System Architecture

The EV Charging Station Location Predictor is built with a robust Flask-based architecture that combines machine learning with geospatial analysis. Here's a detailed look at the key components:

Core Components

class EVChargingLocationPredictor:
    def __init__(self):
        self.model = None
        self.scaler = None
        self.all_feature_columns = [
            'restaurant', 'cafe', 'fast_food', 'parking', 
            'bicycle_parking', 'mall', 'supermarket', 'hotel', 
            'station', 'highway_service'
        ]
        self.feature_weights = {
            'restaurant': 0.15,
            'cafe': 0.1,
            'fast_food': 0.1,
            'parking': 0.15,
            'bicycle_parking': 0.05,
            'mall': 0.15,
            'supermarket': 0.1,
            'hotel': 0.1,
            'station': 0.05,
            'highway_service': 0.05
        }

Feature Engineering

The system analyzes multiple factors to determine optimal locations:

  1. Proximity Analysis
    • Calculates distances to key amenities using OpenStreetMap data
    • Implements exponential decay for distance scoring
    • Handles missing data with maximum distance values
def preprocess_data(self, data, for_training=False):
    features_to_process = self.trained_features if for_training else self.selected_features
    available_features = [col for col in features_to_process if col in data.columns]
    
    # Calculate proximity scores using exponential decay
    proximity_scores = data[available_features].apply(
        lambda x: np.exp(-x/1000)
    )
    
    return proximity_scores

Machine Learning Model

The prediction system uses a Random Forest Regressor for robust location scoring:

def train_model(self, csv_file_path):
    data = pd.read_csv(csv_file_path)
    X = self.preprocess_data(data[self.trained_features], for_training=True)
    y = X.apply(lambda row: self.calculate_suitability_score(row), axis=1)
    
    X_train, X_test, y_train, y_test = train_test_split(
        X, y, test_size=0.2, random_state=42
    )
    
    self.scaler = StandardScaler()
    X_train_scaled = self.scaler.fit_transform(X_train)
    
    self.model = RandomForestRegressor(n_estimators=100, random_state=42)
    self.model.fit(X_train_scaled, y_train)

Geospatial Analysis

The system incorporates sophisticated geospatial analysis:

  1. Land Verification

    def is_on_land(self, lat, lon):
        point = gpd.GeoDataFrame(
            geometry=[Point(lon, lat)], 
            crs="EPSG:4326"
        )
        return self.world.contains(point.iloc[0].geometry).any()
    
  2. Region Analysis

    • Implements intelligent sampling of locations within regions
    • Maintains minimum distance between suggested locations
    • Generates interactive visualizations

Visualization System

The predictor includes a comprehensive visualization system using Folium:

def generate_map(self, lat, lon, score, proximity_ranges):
    m = folium.Map(location=[lat, lon], zoom_start=13)
    
    # Add location marker with suitability score
    folium.Marker(
        [lat, lon],
        popup=f"Suitability Score: {score:.2f}",
        tooltip="Analyzed Location"
    ).add_to(m)
    
    # Add proximity circles for each feature
    for feature, proximity in proximity_ranges.items():
        if feature in self.selected_features:
            color = {
                'close': 'rgba(0, 255, 0, 0.3)',
                'medium': 'rgba(255, 165, 0, 0.3)',
                'far': 'rgba(255, 0, 0, 0.3)',
                'not found': 'rgba(128, 128, 128, 0.3)'
            }[proximity]
            
            radius = {
                'close': 500,
                'medium': 1000,
                'far': 2500,
                'not found': 0
            }[proximity]
            
            if radius > 0:
                folium.Circle(
                    [lat, lon],
                    radius=radius,
                    color=color,
                    fill=True,
                    fillColor=color,
                    fillOpacity=0.2
                ).add_to(m)

API Endpoints

The system exposes several RESTful endpoints:

  1. Location Analysis

    • Single location analysis
    • Region-wide analysis with multiple points
    • Large area analysis with optimal location finding
  2. Model Management

    • Model training endpoint
    • Feature selection
    • Results export

Performance Optimizations

  1. Caching

    • Implements model caching using joblib
    • Stores trained features and scaler
  2. Error Handling

    • Comprehensive logging system
    • Graceful fallbacks for missing data
    • Input validation and sanitization

Future Improvements

  1. Model Enhancements

    • Integration of traffic data
    • Time-based demand analysis
    • Weather pattern consideration
  2. System Scalability

    • Distributed processing for large regions
    • Real-time data updates
    • API rate limiting and optimization

This technical implementation showcases a sophisticated approach to solving the EV charging station location problem, combining machine learning, geospatial analysis, and modern web technologies.