Technical Implementation: Building an EV Charging Station Predictor & AI Assistant at Exicom
System Architecture
The EV Charging Station Location Predictor is built with a robust Flask-based architecture that combines machine learning with geospatial analysis. Here's a detailed look at the key components:
Core Components
class EVChargingLocationPredictor:
def __init__(self):
self.model = None
self.scaler = None
self.all_feature_columns = [
'restaurant', 'cafe', 'fast_food', 'parking',
'bicycle_parking', 'mall', 'supermarket', 'hotel',
'station', 'highway_service'
]
self.feature_weights = {
'restaurant': 0.15,
'cafe': 0.1,
'fast_food': 0.1,
'parking': 0.15,
'bicycle_parking': 0.05,
'mall': 0.15,
'supermarket': 0.1,
'hotel': 0.1,
'station': 0.05,
'highway_service': 0.05
}
Feature Engineering
The system analyzes multiple factors to determine optimal locations:
- Proximity Analysis
- Calculates distances to key amenities using OpenStreetMap data
- Implements exponential decay for distance scoring
- Handles missing data with maximum distance values
def preprocess_data(self, data, for_training=False):
features_to_process = self.trained_features if for_training else self.selected_features
available_features = [col for col in features_to_process if col in data.columns]
# Calculate proximity scores using exponential decay
proximity_scores = data[available_features].apply(
lambda x: np.exp(-x/1000)
)
return proximity_scores
Machine Learning Model
The prediction system uses a Random Forest Regressor for robust location scoring:
def train_model(self, csv_file_path):
data = pd.read_csv(csv_file_path)
X = self.preprocess_data(data[self.trained_features], for_training=True)
y = X.apply(lambda row: self.calculate_suitability_score(row), axis=1)
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.2, random_state=42
)
self.scaler = StandardScaler()
X_train_scaled = self.scaler.fit_transform(X_train)
self.model = RandomForestRegressor(n_estimators=100, random_state=42)
self.model.fit(X_train_scaled, y_train)
Geospatial Analysis
The system incorporates sophisticated geospatial analysis:
-
Land Verification
def is_on_land(self, lat, lon): point = gpd.GeoDataFrame( geometry=[Point(lon, lat)], crs="EPSG:4326" ) return self.world.contains(point.iloc[0].geometry).any()
-
Region Analysis
- Implements intelligent sampling of locations within regions
- Maintains minimum distance between suggested locations
- Generates interactive visualizations
Visualization System
The predictor includes a comprehensive visualization system using Folium:
def generate_map(self, lat, lon, score, proximity_ranges):
m = folium.Map(location=[lat, lon], zoom_start=13)
# Add location marker with suitability score
folium.Marker(
[lat, lon],
popup=f"Suitability Score: {score:.2f}",
tooltip="Analyzed Location"
).add_to(m)
# Add proximity circles for each feature
for feature, proximity in proximity_ranges.items():
if feature in self.selected_features:
color = {
'close': 'rgba(0, 255, 0, 0.3)',
'medium': 'rgba(255, 165, 0, 0.3)',
'far': 'rgba(255, 0, 0, 0.3)',
'not found': 'rgba(128, 128, 128, 0.3)'
}[proximity]
radius = {
'close': 500,
'medium': 1000,
'far': 2500,
'not found': 0
}[proximity]
if radius > 0:
folium.Circle(
[lat, lon],
radius=radius,
color=color,
fill=True,
fillColor=color,
fillOpacity=0.2
).add_to(m)
API Endpoints
The system exposes several RESTful endpoints:
-
Location Analysis
- Single location analysis
- Region-wide analysis with multiple points
- Large area analysis with optimal location finding
-
Model Management
- Model training endpoint
- Feature selection
- Results export
Performance Optimizations
-
Caching
- Implements model caching using joblib
- Stores trained features and scaler
-
Error Handling
- Comprehensive logging system
- Graceful fallbacks for missing data
- Input validation and sanitization
Future Improvements
-
Model Enhancements
- Integration of traffic data
- Time-based demand analysis
- Weather pattern consideration
-
System Scalability
- Distributed processing for large regions
- Real-time data updates
- API rate limiting and optimization
This technical implementation showcases a sophisticated approach to solving the EV charging station location problem, combining machine learning, geospatial analysis, and modern web technologies.