Technical Implementation: Diving Deep: My Social Information Network Project for Spotting Crypto Scams
System Architecture
The system is built using a microservices architecture with the following key components:
Data Collection Services
class DataCollector:
def __init__(self):
self.blockchain_collector = BlockchainCollector()
self.social_media_collector = SocialMediaCollector()
self.memecoin_collector = MemecoinCollector()
async def collect_data(self):
blockchain_data = await self.blockchain_collector.fetch_transactions()
social_data = await self.social_media_collector.fetch_posts()
memecoin_data = await self.memecoin_collector.fetch_market_data()
return self.merge_data(blockchain_data, social_data, memecoin_data)
Risk Detection System
def detect_rug_pull_risk(self):
risk_metrics = {
'centralization_risk': min(1.0, top_holders_concentration * 2),
'community_isolation_risk': community_size_ratio,
'network_resilience_risk': min(1.0, critical_nodes / 5)
}
return self._calculate_weighted_risk(risk_metrics)
Key Technical Innovations
-
Hybrid Graph Analysis
- Combines blockchain transaction patterns with social media influence
- Uses spectral clustering for community detection
- Implements adaptive betweenness calculation
-
Temporal Resilience Analysis
def get_subgraph_for_timewindow(self, start, end): return self.blockchain_graph.edge_subgraph([ (u, v) for u, v, d in self.blockchain_graph.edges(data=True) if start <= d['timestamp'] < end ])
-
Synthetic Data Augmentation
- Generates realistic market cap distributions
- Creates plausible coin naming patterns
- Maintains statistical properties of real data
-
Robust Correlation Handling
try: correlation = np.corrcoef([tx_volume, social_influence])[0,1] except: correlation = 0.0
-
Market Influence Modeling
- Implements ERGM with robust regression
model = sm.RLM(y, X).fit()
- Calculates Gini coefficients for market concentration
Visualization System
Multi-Panel Network Visualization
- Community Structure
- Market Cap Relationships
- Combined Force-Directed Layout
Implementation Features
- Adaptive node sizing by market cap
- Edge coloring by similarity weight
- Automated label placement
- Community color coding
def visualize_network_models(self):
plt.figure(figsize=(20, 10))
# Community visualization
nx.draw_networkx(..., node_color=node_colors)
# Market relationships
nx.draw_networkx(..., edge_cmap=plt.cm.YlOrRd)
# Combined layout
nx.draw_networkx(..., edge_width=combined_weights)
Testing Framework
Synthetic Test Scenarios
- High/Medium/Low risk configurations
- Automated explanation generation
- Validation against known patterns
Test Implementation
def test_rug_pull_detection(self):
scenarios = {
'high_risk': self._generate_high_risk_scenario(),
'medium_risk': self._generate_medium_risk_scenario(),
'low_risk': self._generate_low_risk_scenario()
}
for name, metrics in scenarios.items():
self.explain_rug_pull_risk(metrics)
Performance Considerations
-
Graph Optimization
- Uses sparse matrix representations
- Implements batched edge processing
- Memoizes centrality calculations
-
API Rate Limiting
time.sleep(1) # Respect CoinMarketCap rate limits
-
Numerical Stability
- Adds epsilon to denominators
- Implements safe division
- Handles NaN/Inf edge cases
Error Handling System
-
Graph Metric Fallbacks
if len(undirected_graph) < 3: features['betweenness'] = 0.0
-
API Error Recovery
try: # API call here except Exception as e: print(f"API Error: {str(e)}") return pd.DataFrame()
-
Numerical Safety
engagement_score = value / (social_influence + 1)
Future Improvements
-
Enhanced Graph Analysis
- Implement more sophisticated network metrics
- Add support for temporal graph analysis
- Incorporate multi-layer network analysis
-
Machine Learning Enhancements
- Experiment with deep learning models
- Implement online learning for model updates
- Add support for semi-supervised learning
-
Scalability Improvements
- Implement data sharding
- Add support for distributed processing
- Optimize memory usage for large graphs
-
Additional Features
- Add support for more blockchain networks
- Implement cross-chain analysis
- Add advanced visualization tools