Technical Implementation: Diving Deep: My Social Information Network Project for Spotting Crypto Scams

System Architecture

The system is built using a microservices architecture with the following key components:

Data Collection Services

class DataCollector:
    def __init__(self):
        self.blockchain_collector = BlockchainCollector()
        self.social_media_collector = SocialMediaCollector()
        self.memecoin_collector = MemecoinCollector()

    async def collect_data(self):
        blockchain_data = await self.blockchain_collector.fetch_transactions()
        social_data = await self.social_media_collector.fetch_posts()
        memecoin_data = await self.memecoin_collector.fetch_market_data()
        return self.merge_data(blockchain_data, social_data, memecoin_data)

Risk Detection System

def detect_rug_pull_risk(self):
    risk_metrics = {
        'centralization_risk': min(1.0, top_holders_concentration * 2),
        'community_isolation_risk': community_size_ratio,
        'network_resilience_risk': min(1.0, critical_nodes / 5)
    }
    return self._calculate_weighted_risk(risk_metrics)

Key Technical Innovations

  1. Hybrid Graph Analysis

    • Combines blockchain transaction patterns with social media influence
    • Uses spectral clustering for community detection
    • Implements adaptive betweenness calculation
  2. Temporal Resilience Analysis

    def get_subgraph_for_timewindow(self, start, end):
        return self.blockchain_graph.edge_subgraph([
            (u, v) for u, v, d in self.blockchain_graph.edges(data=True)
            if start <= d['timestamp'] < end
        ])
    
  3. Synthetic Data Augmentation

    • Generates realistic market cap distributions
    • Creates plausible coin naming patterns
    • Maintains statistical properties of real data
  4. Robust Correlation Handling

    try:
        correlation = np.corrcoef([tx_volume, social_influence])[0,1]
    except:
        correlation = 0.0
    
  5. Market Influence Modeling

    • Implements ERGM with robust regression
    model = sm.RLM(y, X).fit()
    
    • Calculates Gini coefficients for market concentration

Visualization System

Multi-Panel Network Visualization

  1. Community Structure
  2. Market Cap Relationships
  3. Combined Force-Directed Layout

Implementation Features

def visualize_network_models(self):
    plt.figure(figsize=(20, 10))
    # Community visualization
    nx.draw_networkx(..., node_color=node_colors)
    # Market relationships
    nx.draw_networkx(..., edge_cmap=plt.cm.YlOrRd)
    # Combined layout
    nx.draw_networkx(..., edge_width=combined_weights)

Testing Framework

Synthetic Test Scenarios

Test Implementation

def test_rug_pull_detection(self):
    scenarios = {
        'high_risk': self._generate_high_risk_scenario(),
        'medium_risk': self._generate_medium_risk_scenario(),
        'low_risk': self._generate_low_risk_scenario()
    }
    for name, metrics in scenarios.items():
        self.explain_rug_pull_risk(metrics)

Performance Considerations

  1. Graph Optimization

    • Uses sparse matrix representations
    • Implements batched edge processing
    • Memoizes centrality calculations
  2. API Rate Limiting

    time.sleep(1)  # Respect CoinMarketCap rate limits
    
  3. Numerical Stability

    • Adds epsilon to denominators
    • Implements safe division
    • Handles NaN/Inf edge cases

Error Handling System

  1. Graph Metric Fallbacks

    if len(undirected_graph) < 3:
        features['betweenness'] = 0.0
    
  2. API Error Recovery

    try:
        # API call here
    except Exception as e:
        print(f"API Error: {str(e)}")
        return pd.DataFrame()
    
  3. Numerical Safety

    engagement_score = value / (social_influence + 1)
    

Future Improvements

  1. Enhanced Graph Analysis

    • Implement more sophisticated network metrics
    • Add support for temporal graph analysis
    • Incorporate multi-layer network analysis
  2. Machine Learning Enhancements

    • Experiment with deep learning models
    • Implement online learning for model updates
    • Add support for semi-supervised learning
  3. Scalability Improvements

    • Implement data sharding
    • Add support for distributed processing
    • Optimize memory usage for large graphs
  4. Additional Features

    • Add support for more blockchain networks
    • Implement cross-chain analysis
    • Add advanced visualization tools